

More than an Advisory Committee

Engaging farmers in watershed improvement projects

Chad Ingels
ISU Extension Watershed Projects
Wisconsin River Water Quality Improvement Symposium
February 14, 2014

The first follower is what transforms a lone nut into a leader.

- Derek Sivers at TED Feb 2010

Starting a movement

Develop incentive structure

Establish water monitoring

Set goals and evaluate progress

Use local data and outside resources

Regular meetings

Non-profit status

Watershed Councils

Awareness

Awareness

Assessment

Assessment

Install 5 sub-subsurface denitrifying bioreactors in

priority tile-drained fields

Install vegetative filter strips or seed cover crops on 20 fields receiving manure applications

Restrict livestock stream access or provide an offstream watering source at 6 of 17 watershed locations where livestock currently access the stream

Goals-Plans

Reduce annual sediment delivery to North Fork River Headwaters by an additional 7,500 tons

Watershed participation rate of 85%

Watershed Averages: IPI - 2.00, SCI - 0.6, CNT - 2,000 ppm

Goals-Benchmarks

Two consecutive years of season-long, rain event, average total phosphorus water analysis of less than 1.40 mg/L at monitoring site 3

A recreation season indicator bacteria (E. coli) geometric mean less than the Class A2 criterion of 630 orgs/100 ml at monitoring site DRC 19

Goals-Outcomes

Targeting

Hewitt Creek Watershed Phosphorus Index Soil Conditioning Index Listing - 2012

FARM ID	FIELD ID	ACRES	P INDEX	SCI	SOIL TEST P	STREAM DIS	ROTATION	CONTOUR	NOTILL
51	11	4.4	8.72	0.82	535	200	ссонн	N	
19	H6	10.0	8.34	0.12	248	3230	CCCOMMM	N	
41	4A	20.3	7.20	-0.04	145	800	CC	Y	
48	middle	43.4	6.34	-0.04	105	1290	CCCOAA		
15	2B	12.9	6.30	0.09	61	450	ccs	Y	
51	10	1.1	6.30	0.70	224	630	ссонн	N	
31	5	6.6	5.84	0.56	148	480	CCOMMM	Y	
41	4B	9.5	5.82	0.42	145	185	cc	Y	
26	8	6.2	5.56	0.45	45	280	сссоннн	N	
30	N4	20.7	5.26	0.06	22	220	cs	Y	
26	7	6.4	5.21	0.27	58	990	сссоннн	N	
48	south	39.9	5.09	0.10	78	1180	CCCOAA		
6	R3	22.3	5.06	0.46	99	600	сссоннн	Y	
11	51	62.1	4.97	-0.02	47	880	CCS	N	
13	1	37.4	4.96	0.37	105	330	CC	N	
23	H-east	67.6	4.87	0.45	277	1550	CC	N	
26	4	16.7	4.82	0.12	42	1770	сссоннн	N	
44	H-2	48.0	4.80	0.28	125	940	cc	Υ	
18	5A1	7.3	4.72	0.16	47	610	ссоннн	N	
6	R5	14.0	4.68	0.26	59	1110	сссоннн	N	
45	H-7	6.9	4.63	0.22	43	250	CCS	N	Υ
15	6	3.1	4.63	0.43	50	430	ссоннн	Y	
13	2	113.2	4.62	0.23	145	1090	cc	N	
15	7	2.6	4.62	0.43	90	1420	ссоннн	Y	
43	1	32.4	4.53	0.00	32	1080	CC	Y	
37	2	18.8	4.46	0.45	99	1530	сссоннн	N	
35	W2	18.4	4.45	0.27	23	340	сссоннн	Y	
18	4A	13.4	4.43	0.44	34	150	ссоннн	N	
31 19	4 H4	19.4 28.9	4.36 4.35	0.56 0.51	92 219	330 4740	CCCOMMM	Y N	
56	south 3	5.6	4.33	0.16	49	640	CCCOMINIM	N	
6	R2	12.1	4.29	0.16	115	990	сссоннн	Y	
25	2	8.2	4.29	0.46	132	560	CCB	N N	
26	1	9.8	4.26	0.69	111	325	СССОННН	N N	
48	north	32.9	4.23	0.44	126	1220	CCCOAA		
41	1-2	50.0	4.19	-0.04	49	450	CC	Y	
29	H2	15.8	4.18	0.43	54	800	ссонннн	N.	
35	W4	9.0	4.14	0.17	58	670	сссоннн	Y	
28	E2	4.0	4.07	0.47	143	1550	СССОННН	Ň	
8	JM1	12.8	4.03	0.58	153	600	сссоннн	Y	
26	6	19.9	4.02	0.44	41	760	сссоннн	Ý	
26	2	12.0	4.01	0.30	46	380	сссоннн	Ý	
6	R6	13.4	3.97	0.62	94	810	СССОННН	Ň	
44	H-8	20.1	3.95	0.23	80	1930	cc	N	
51	17	3.2	3.91	0.80	245	220	ссонн	N	
6	B4	12.9	3.89	-0.04	73	740	CC	Y	
26	3	16.6	3.88	0.40	65	1100	сссоннн	N	
8	H5	6.6	3.84	0.41	51	1130	cc	Y	
19	H2	8.4	3.83	0.54	204	4915	сссоммм	N	
37	3	20.9	3.82	0.45	70	1400	сссоннн	N	
53	6-LF	15.1	3.80	0.42	55	620	CCOMMMM	N	
19	H7	20.7	3.78	0.47	105	3940	сссоммм	N	
30	51	12.0	3.76	0.30	20	340	cs	Y	
41	5-7	59.1	3.74	-0.04	39	580	cc	Y	
6	R1	35.8	3.74	0.46	78	1290	сссоннн	Y	
28	E1	29.5	3.74	0.47	85	1230	сссоннн	N	

Hewitt Creek Watershed Phosphorus Index Soil Conditioning Index Listing - 2012

					-	-			
FARM ID	FIELD ID	ACRES	P INDEX	SCI			ROTATION		NOTILL
34	6	12.0	3.74	0.77	175	1060	CC	Y	
48	east	33.3	3.71	0.56	151	700	CCCOAA	Y	
45	Kr-4	16.6	3.68	0.21	38	1070	CCS	Y	Υ
43	52	2.8	3.62	-0.02	56	3720	CC	Y	
29	НЗ	44.6	3.58	0.21	26	2890	ссонннн	N	
30	N2	17.3	3.56	0.25	12	300	cs	N	
51	15	11.7	3.54	0.80	207	400	ссонн	N	
25	3	18.3	3.51	0.30	64	1360	CCB	N	
25 43	5 51	37.0 6.9	3.51 3.50	0.41 -0.02	48 27	610 3500	CCB	N Y	
45	H-10	10.6	3.49	0.75	133	340	œ	N N	
23	80 80	78.5	3.49	0.75	165	1940	œ	N N	
11	N2	45.6	3.45	0.41	47	2600	ccs	N N	
44	H-6	23.0	3.43	0.09	56	760	cc	Y	
18	6A	9.8	3.43	0.44	40	290	ссоннн	N.	
10	5	14.8	3.42	0.63	169	1130	CCOMMM	N N	
24	5	15.2	3.41	0.10	102	5200	CCS	Y	
8	B1	65.5	3.40	0.26	42	650	CCCS	Ň	
50	17	4.3	3.35	0.28	34	250	cs	-	
6	W5	10.1	3.35	0.46	51	880	сссоннн	Y	
25	4	48.7	3.31	0.30	65	860	CCB	N	
3	10H	6.3	3.30	0.59	75	580	ссонннн	N	Y
51	18	18.1	3.28	0.79	129	600	ссонн	Y	
53	4-LFs	11.3	3.24	0.42	45	760	ссомммм	Y	
19	Н3	32.0	3.23	0.72	169	6620	CCCOMMM	N	
29	P2	18.4	3.19	0.45	11	510	ссонннн	Y	
19	52	8.9	3.18	0.47	87	3040	CCCOMMM	N	
11	N3	44.7	3.17	0.09	47	4060	ccs	N	
24	2	17.7	3.15	0.10	68	3010	ccs	Y	
31	P	6.8	3.14	0.39	68	850	Pasture	N	Y
57	F north 3	17.0	3.13	-0.05	17	1440	CS	Y	
19	H5	22.0	3.13	0.47	109	4130	CCCOMMM	N	
57	F north 1	25.0	3.12	0.30	24	620	cc	Y	
8	JM8	13.8	3.12	0.36	60	900	CC	Y	
26	5	16.5	3.10	0.37	52	3000	сссоннн	N	
8	НЗ	45.0	3.10	0.38	50	910	cccs	Y	
8	JM6	48.8	3.08	0.05	34	720	CC	Y	
30	N3	11.7	3.08	0.25	17	360	CS	N Y	
35	W3	27.9	3.06	0.51	36	410	сссоннн	-	
30 23	S8 H-west	6.8 42.7	3.06 3.06	0.68 0.75	37 165	190 990	CCOHH	Y N	
44	H-4/5	37.6	3.04	0.75	40	1150	cc	Y	
6	M3	10.4	3.04	0.28	28	1230	сссоннн	Y	
29	P3	10.4	3.02	0.40	18	490	ссоннн	Ÿ	
6	R4	72.8	3.02	0.46	66	1510	сссоннн	Ÿ	
8	JM4	38.4	3.00	0.31	56	1740	CC	N	
50	T3	35.9	2.98	0.31	34	500	cs	N	Y
18	5A2	8.7	2.97	0.44	71	1490	ссоннн	N	
56	south 2	61.4	2.96	0.48	40	1730	CCOAAA	Y	
6	W4	41.8	2.95	0.46	42	2000	СССОННН	Ÿ	
5	11	55.0	2.91	0.47	76	1540	ccccs	Ÿ	
35	W1	32.1	2.91	0.51	57	460	сссоннн	Υ	
43	2b	30.7	2.90	0.27	49	2030	cccs	Υ	
35	W5	22.2	2.89	0.53	70	1270	сссоннн	Y	
5	12	6.6	2.89	0.63	133	6410	ccccs	N	
5	8	25.2	2.88	0.59	79	960	CCCAAA	Υ	

1/8

Hewitt Creek Watershed Phosphorus Index Soil Conditioning Index Listing - 2012

FARM ID	FIELD ID	ACRES	P INDEX	SCI			ROTATION	CONTOUR	NOTILL
50	T2	46.9	1.73	0.37	18	1040	CS	N	Y
25	1	13.9	1.73	0.59	75	990	CCB	N	
30	N1	46.2	1.73	0.68	12	1140	ссонн	Y	
16	6	8.9	1.73	0.95	54	1160	CC	Y	Υ
4	52	17.1	1.72	0.39	12	590	cs	N	Υ
29	P1	26.7	1.72	0.59	16	1280	ссонннн	Y	
34	5	4.4	1.72	0.83	63	640	CCCOAAA	Y	
24		44.9	1.71	0.36	49	3250	ccs	Y	
45 3	Kr-3 8H	7.9 9.4	1.70 1.69	0.41 0.67	23 53	1610 990	CCOHHH	Y N	Y
8	H4	42.3	1.69	0.67	64	1720	СССОННН	Y	
18	5A3	4.0	1.69	0.74	53	720	ссонни	N N	
12	2	36.6	1.68	0.72	126	2120	CS	Y	Υ
45	H-1	26.7	1.66	0.72	121	510	œ	N	
16	5	6.6	1.66	0.82	54	1160	ccs	Ϋ́	Y
45	Ke-3	41.2	1.65	0.59	30	1940	ccs	N.	Ý
5	3	39.0	1.64	0.44	33	4870	ccccs	Ϋ́	
8	H2	19.0	1.62	0.76	60	2390	СССОННН	Ň	
28	Bo1	36.7	1.62	0.80	64	530	CSCOHHH	N	
24	1	33.3	1.60	0.30	42	4280	CS	Y	
24	3	50.2	1.59	0.36	38	3120	ccs	Ý	
34	4	5.2	1.59	0.78	51	630	CCCOAAA	Ÿ	
56	south 1	30.0	1.57	0.79	51	800	cc		
21	4A	6.4	1.56	0.74	45	180	CCCGraze	N	N
34	7	6.1	1.55	83.00	45	560	CCCOAAA	Y	
50	P3	16.8	1.54	0.48	26	840	CC	Y	Y
45	Ke-1	35.9	1.54	0.59	26	3270	cc	N	
31	2	22.3	1.54	0.82	62	1230	CCOMMM	N	
51	12	8.2	1.53	1.10	311	320	Pasture	N	Y
28	E4	26.3	1.52	0.77	105	3600	CSCOHHH	N	
7	5-Aks	3.4	1.52	0.91	41	200	CC	N	
2	NW34 E2	5.6	1.51	0.29	10	1760	CS	N	Y
7	8A	65.5	1.51	0.57	68	1410	CC	N	
15	9A	8.2	1.50	0.81	93	1030	ссоннн	Y	
34	1A-3	9.7	1.48	0.78	29	550	CCCOAAA	Y	
49	South	43.2	1.45	0.58	20	3890	cs	N	
58	west	51.7	1.44	0.71	46	4790	cc	Y	
55	1	7.5	1.42	0.56	69	1880	CS	N	
49	North	35.3	1.42	0.58	16	2950	CS	N	
4	JPW1	24.9	1.40	1.10	62	490	cc	N	Y
4	53	3.8	1.38	0.47	24	560	cs	N	Y
2	west 98	27.5	1.34	0.59 0.81	25 63	990 530	CCOHHH	Y	Y
15 34	1A-4	13.7 15.0	1.34 1.34	0.81	74	1900	CC	Y	
2	NW34 west	3.5	1.34	0.97	10	2550	cs	N N	Υ
29	P5	16.5	1.33	0.55	18	2040	ССОННИН	Y	Y
16	2	8.7	1.31	0.82	74	1200	CCS	Ý	Y
2	B4	75.5	1.30	0.61	46	2350	cs	Ý	Ÿ
12	1	36.0	1.30	0.72	72	3160	cs	Ý	Ÿ
37	1A	19.8	1.27	0.72	43	2530	СССОННН	N N	
17	middle	3.8	1.27	0.08	28	140	CS	N N	Y
7	3-4A	61.3	1.26	0.74	63	960	œ	N	
56	north 3	2.6	1.25	0.87	49	100	CCOAAA		
36	H1	24.4	1.24	0.65	40	4700	CS	Y	Y
56	north 4	8.6	1.24	0.76	49	310	CCOAAA	•	
12	4	18.4	1.23	0.72	93	1075	CS	Y	Υ

Hewitt Creek Watershed

Phosphorus Index Soil Conditioning Index Listing - 2012

					•				
FARM ID	FIELD ID	ACRES	P INDEX	SCI			S ROTATION	CONTOUR	NOTILL
4	R5	28.8	1.22	0.62	29	490	cs	Y	Y
38	D-n	47.4	1.22	0.78	42	1570	cc	N	
5	10	161.2	1.21	0.74	46	5860	cc	Y	
4	H1	101.7	1.18	0.76	73	1990	ccs	Y	Y
4	51	74.5	1.17	0.65	38	2510	cs	N	Y
2	center	134.8	1.16	0.59	34	1280	cs	Υ	Υ
43	5	25.0	1.15	0.71	32	3070	CCOAAA	Y	
32	r3 s	39.1	1.15	0.79	110	3620	CS	N	Υ
2	Dodge S	20.6	1.14	0.66	12	5030	CS	N	Υ
33	n2	73.2	1.14	0.71	46	540	CS	Υ	Y
22	1	62.4	1.14	0.71	30	1820	cs	N	Υ
7	2Ae	17.2	1.14	0.73	49	1400	CCOMMM	Y	
33 1	n3 I	36.5 53.4	1.14 1.13	0.79	89 113	410 2690	cs cs	Y Y	Y
3	5H				50	2060	CCCS	N N	Y
40		19.4 55.2	1.13	0.84	21	2880	CS	N N	Y
40 45	South V-3	22.7		0.62	17		CS	Y	Υ
45 32	V-3 r2	25.0	1.08	0.54	1/ 50	1960 540	CS	Y	Y
37	1B	19.0	1.06	0.71	25	2820	СССОННН	N N	
3/	6Hb	3.1	1.06	0.71	68	1750	ссонин	N	Υ
45	V-2	39.9	1.05	0.71	20	840	CS	Y	Ÿ
29	V-2 P7	13.5	1.05	0.07	19	1500	ССОНННН	N N	
36	H2	71.6	1.05	0.75	40	6700	CS	N	Y
51	13	13.8	1.04	1.10	201	440	Pasture	N	Ÿ
44	T-2	77.6	1.02	0.77	13	1200	CS	N	Ÿ
33	n1	78.5	1.02	0.88	33	780	cs	N	Ÿ
28	E3	11.9	1.00	0.73	100	1800	Pasture	N	Ý
16	1	10.2	1.00	0.97	87	900	cc	Y	Ý
1	i	58.0	0.99	0.72	48	2300	cs	Ý	Ý
12	3	12.8	0.98	0.72	66	1430	cs	Ÿ	Ÿ
2	Dodge N	18.0	0.97	0.83	22	4490	cs	N	Υ
22	2	8.6	0.96	0.71	23	1120	cs	Y	Ÿ
4	JPE4	33.3	0.96	1.10	105	1580	cc	N	Ý
38	D-m1	23.6	0.95	0.47	47	560	cs	N	
17	north	7.0	0.95	0.69	25	520	cs	N	Y
7	1A	19.0	0.95	0.74	16	350	cc	N	
40	North	61.9	0.93	0.62	16	3810	cs	N	
3	4H	21.2	0.93	0.75	42	4520	cccs	Y	Υ
14	a7	47.3	0.92	0.71	15	750	cs	Y	Y
32	r1	82.3	0.91	0.71	38	1590	cs	Y	Υ
4	54	11.8	0.91	1.10	13	430	cc	N	Y
16	4	21.1	0.90	0.82	49	1440	ccs	Y	Y
5	2	36.3	0.90	0.87	54	2300	ccccs	Y	
50	T6	5.4	0.89	0.66	21	500	cs	N	Y
38	D-s	29.3	0.88	0.48	26	520	cs	N	
50	P2	27.9	0.88	0.58	25	1000	CC	Y	Υ
44	T-3	52.8	0.87	0.75	10	1760	cs	N	Y
27	NE-2	25.2	0.86	0.63	12	4070		N	
17	south	21.1	0.85	0.69	28	380	cs	N	Υ
34	1A-1b	16.6	0.84	0.70	51	920	cc	Y	Y
14	a 2	16.8	0.84	0.71	13	400	CS	Υ	Υ
38	D-m2	6.3	0.83	0.72	50	320	cs	N	
15	4	2.2	0.83	1.10	90	310	cc	Y	Y
4	R4	33.1	0.82	0.79	31	1200	CS	N	Υ
50	P4	3.8	0.81	0.48	8	1250	CC	Υ	Υ
36	N2	22.4	0.81	0.65	17	480	CS	Y	Y

5/8

2012 HEWITT CREEK PERFORMANCE-BASED FARM and WATERSHED ENVIRONMENTAL MANAGEMENT PROGRAM

[Payments near July 1 and December 1 may be prorated if participation exceeds \$45,000].
PHOSPHORUS INDEX (PI) Maximum \$10.00/A. See P Index explanation on back of this page. \$500 first year payment if the weighted whole farm P Index is less than a phosphorus loss risk of 3 (2-5 is medium risk). All field scores weighted by the field size and risk of P loss from each field to attain a weighted average farm P-index. \$100 paid for annual data and P-index review after the first year. \$150 bonus if the P-index is 2 or less (low) or for each 0.3 reduction in P Index. \$10 per management area or field tested for soil test P, at least 10 acres per sample (max 4/yr for 5 years). Not to be included with grid sampling.
SOIL CONDITIONING INDEX (SCI) Maximum \$10.00/Ac. See back for SCI explanation. \$200 first year payment per 0.1 SCI above 0 for whole farm weighted average of all fields. Example: A weighted average farm SCI of 0.4 will provide a payment of \$800. \$100 per 0.1 SCI for annual data and SCI review after the first year. \$200 paid for each 0.1 improvement in the annual SCI.
NITROGEN PERFORMANCE MANAGEMENT (Corn Stalk Nitrate-Nitrogen analysis) \$400 payment if the farm weighted average analyses does not exceed 1,700ppm. \$200 bonus if the weighted average (Max. 50 acres/field) is less than 1,300ppm. \$100 for the first two NO ₃ N samples and \$40 for each additional sample (max 4 samples).

Targeting Performance

OTHER INCENTIVES		
\$200 First time manure application	n calibration and manure a	nalysis.
\$50 Additional manure analyses t	taken and results reported !	by project cooperators (first
time calibration required).		
\$20 Per acre up to 40 acres for fall	ll cover crop on corn silag	e or soybean stubble.
\$300 Grid sampling and variable ra	ate fertilizer application (4	0 acres/year for 5 years).
\$200 Install a below-feedlot grass:	filter, pre-lot water diversi	on or roof gutters.
\$200 Managed grazing (5 or more	paddocks).	
\$200 Septic system up-grade. Low	v interest revolving fund lo	oans available (515-242-6043).
\$200 Farmstead or Streambank As	ssessment (first time self as	ssessment or changes-
improved assessment).		
\$0.50/ft., maximum 1,200 ft., new,	repaired or reconstructed	waterways, headlands, or
buffers, minimum 30' width.	Must be maintained for 5	years, may be hayed or
grazed, minimum 25# brome	_	ıg.
\$200 Install fabric during waterwa	y installation and repair.	
\$2000 New or improved feedlot ru	noff controls -consulting	with Extension Ag Engineer.
WATERSHED ENVIRONMENTAL PI	ERFORMANCE	
\$200 Bonus for achieving 85% of		<u>-</u>
program. Payable to coopera	_	watershed improvement
incentives per farm operation	1.	
Name	Address	Phone
	Email address	Cell Phone

Targeting Performance

Iowa Phosphorus Index

- Soil loss
- Distance to stream
- Soil test P
- Management practices
- P application
- Drainage

A measure of the risk of phosphorus loss to the environment

Measured on a scale of 0 to >15 with lower being better

Performance

Soil Conditioning Index

- Soil map unit
- Tillage practices and timing
- Crop rotation
- Yield level
- Management practices
- Manure applications

Measured on a scale of -1 to 1.1 with higher being better

Positive values predict increase in organic matter

Performance

Fall Cornstalk Nitrate Test

Measures amount of nitrate remaining in the corn plant at maturity

Plants with inadequate N remove N from the lower cornstalk and leaves during grain fill

Performance

PI Category	# of fields	total acres	avg. Pl	avg. SCI	avg. soil P	avg. distance	% hay/graze	% contour	% no till
>5	13	204	5.98	0.16	109	932	69	46	0
3 to 5	89	2115	3.77	0.33	86	1398	58	45	4
2 to 3	98	2610	2.46	0.48	58	1855	61	49	11
1 to 2	108	3122	1.40	0.82	49	2312	41	47	45
0 to 1	65	1630	0.76	0.76	33	1748	6	38	85
No PI	<u>21</u>	<u>531</u>		0.46		1786			
	394	10,212							
2012 Water	shed Weighte	d Average	2.19	0.59	58	1861	44	44	31
>5	14	259	5.96	0.18	115	888	64	36	0
3 to 5	95	2331	3.73	0.30	84	1460	55	45	1
2 to 3	102	2603	2.45	0.48	57	1670	59	53	5
1 to 2	112	3346	1.41	0.80	46	2303	39	43	34
0 to 1	59	1428	0.75	0.75	29	1607	7	37	80
No PI	13	<u>252</u>		0.51		2414			
	395	10,219							
2011 Waters	shed Weighte	d Average	2.25	0.58	57	1819	44	44	24
>5	18	385	6.00	0.10	98	824	61	50	0
3 to 5	103	2485	3.73	0.32	83	1413	53	45	3
2 to 3	94	2347	2.45	0.51	59	1694	60	55	5
1 to 2	100	3126	1.44	0.80	47	2373	41	42	32
0 to 1	55	1313	0.74	0.75	32	1677	9	40	84
No PI	<u>13</u>	<u>253</u>		0.53		2383			
	383	9,910							
2010 Waters	shed Weighte	d Average	2.36	0.57	59	1820	44	45	23
	shed Weighte		2.41	0.53	60	1821	45	49	22
	shed Weighte		2.54	0.51	60	1785	47	48	19
2006 Waters	shed Weighte	d Average	2.48	0.54	63	1741	54	50	19

Evaluation

Evaluation

NORTH FORK CORNSTALK NITRATE TEST RESULTS -- 2009

		NORTI	H FORK CORNSTALK NITRATE TEST RESULTS -	2009		
ID	Sample #	Stalk NO3-N	Nitrogen application	Estimated N	Rotation	Yield (bu/a)
		(ppm)	• "	(Iba/a)		
24	4	5,900	190# 28% Spring	190	CC	148
1	4	5,640	160# NH3 spring, 15 ton solid manure	236 150	CC	211
19 19	1 4	5,210 4,650	150# 28% Spring, 105# 28% Spring, 3000 and liquid box spring.	150 218	CC	197 223
12	- 7	4.256	105# 28% Spring, 3000 gal liquid hog spring 140# 28% spring, 36# DAP spring (poorer stand than comparison)	176	œ	151
4	2	4,120	15# urea spring, 11,000 gal liquid dairy injected Fall	225	CB	217
4	3	4,040	15# urea spring, 11,000 gai liquid dairy injected Fall	225	CC	193
32 20	3	3,890	28%, Extra Fertilizer Spring, Manure History	150	CC	181
17	1 3	3,870 3,750	90# 28% spring, 60# 28% side dress	150	CC	187 203
19	2	3,400	125#28% Spring, 7.5 ton/acre steer manure 150#28% Spring,	150	oc oc	151
4	ī	3,250	100# Anhydrous and 15# urea Spring	115	CB	205
8	1	3,240	130# encapsulated urea Spring	130	CB	193
25	2	3,214	45# 28% spring, 35 ton/a free stall manure	221	CC	181
23	2	3,170	135# urea spring (40# P & 60#K)	135	CB	190
15 16	3	3,137 3,000	25# urea @ planting, 50# 28% side-dress, 60 ton/a spring manure 60# 28% side-dress, 2 ton/a dry fall manure, 3000 gal sping manure	342 217	CC	168 208
25	5	2,980	45# 28% spring, 12,000 gal liquid dairy spring manure	207	sod-C	181
17	2	2,870	50# 28% Spring, 4000 gai liquid hog	200	CB	187
33	2	2,840	120# Anhydrous spring	120	CB	203
1 2	1 2	2,760 2.590	160# NH3 spring	160 209	CC	210 182
25	6	2,590	150# 28% Spring, 4000 gal liquid dairy spring 30# 28% spring, 12,000 gal liquid dairy spring manure	192	sod-C	176
20	3	2.350	60# 28% spring, 12,000 gar liquid daily spring martine 60# 28% spring, 60# 28% side dress	120	СВ	209
12	2	2,293	140# 28% spring, 36# DAP spring	175	CC	171
13	3	2,280	110# 28% spring	110	CB	181
32	1 2	2,090 1,980	28%, Foliar Feed in Spring/Summer	236	oc	175
1 2	1	1,900	160# NH3 spring, 15 ton solid manure 150# 28% Spring, 4000 gai liquid dairy spring	209	00	181 205
22	2	1,860	90# 28% spring, 90# urea spring	180	õ	211
23	3	1,860	170# urea spring (no P & K)	170	CC	175
15	2	1,835	25# urea @ planting, 50# 28% side-dress, 60 ton/a fall manure	342	CC	184
16	4	1,806	40# 28% side-dress, 5500 gal fall/spring manure	329 342	BC	211
15 16	2	1,533 1,500	25# urea @ planting, 50# 28% side-dress, 60 ton/a fall manure 40# 28% side-dress, 5500 gal fall/spring manure (heavy lodging)	342 309	sod-C sod-C	170 176
25	4	1,500	40# 20% side-dress, 5500 gal fairspring manure (neavy looging) 45# 28% spring, 12,000 gal liquid dairy fall manure	309 207	CC CC	170
16	i	1,469	40# 28% side-dress, 2 ton/a dry fall manure, 3000 gal sping manure	197	oc	
29	4	1,380	10 gal 28% starter spring, 6 ton/acre dairy and 100 gal hog manure sea	78	C-hay	204
20	2	1,350	60# 28% spring, 60# 28% side dress	120	CB	223
25	7	1,337	15# 28% spring, 12,000 gal liquid dairy spring manure	177	sod-C	182
25 29	8	1,316 1,300	12,000 gal liquid dairy spring manure 140 # Anhydrous Spring, 10 gal 28% starter spring, 6 ton/acre dairy and	175 218	sod-C CC	181 204
24	2	1,250	160# 28% Spring	160	00	199
6	2	1,250	60# Ammonium Sulfate Fall, 14 ton/a shed manure seasonal	131	CC	193
22	4	1,220	90# 28% spring, 90# urea spring	180	CC	203
1_	3	1,170	160# NH3 spring, 10,000 gal pit manure 125# 28% Spring, 10,000 gal liquid hog	295	CC	204
17 23	1	1,150 1,110	125# 28% Spring, 10,000 gai liquid hog	500 170	CC	196 182
6	- 1	1,110	170# urea spring (30# P & 40#K) 60# Ammonium Sulfate Fall, 14 ton/a shed manure seasonal	170	co	210
29	i	1.010	140 # Anhydrous Spring, 10 gal 28% starter spring, 6 ton/acre dairy and	218	oc	182
25	1	983	60# 28% spring, 15,000 gal liquid dairy fall manure, fall cover crop	262	CC	180
- 11	2	805	60# urea w/planter, 15 tons shedded manure	136	CC	199
32	2	802	28% Spring	280	CB CC	180 203
19 33	1	770 710	60# 28% Spring, 5860 gai liquid hog fall 140# NO3N Spring	280 140	C-sod	203
24	i	613	120# 28% Spring	120	CB	187
6	3	580	60# Ammonium Sulfate Fall, 14 ton/a shed manure seasonal	131	CC	201
13	2	571	110# 28% spring	110	CB	180
25	3	557	45# 28% spring, 35 ton/a free stall manure	221	oc	175
7 13	2	513 502	30# 28% Spring, 4000 gal liquid hog manure October 08. 110# 28% spring	204 110	CB CB	203 181
29	3	470	140 # Anhydrous Spring, 10 gai 28% starter spring, 6 ton/acre dairy and	218	oc oc	187
22	i	451	90# 28% spring,	90	C-sod	229
3	1	450	100# Urea, 10 ton/acre Dairy free stall manure	154	CB	198
22	3	439	90# 28% spring, 50# urea spring	140	CB	179
23	4	423 412	135# urea spring (40# P & 60#K)	135 342	CB	185 180
15 7	1	374	25# urea @ planting, 50# 28% side-dress, 60 ton/a winter manure 30# 28% Spring, 4500 gai liguid hog manure Novemebr 08.	225	CC CB	198
8	4	356	130# encapsulated urea Spring	130	CB	182
8	2	345	130# encapsulated urea Spring	130	CB	218
3	2	315	100# Urea, 10 ton/acre Dairy free stall manure	154	CB	204
35	3	291	160# 28% Spring	160	oc	184
24 18	3	289 284	190# 28% Spring 70 gal 28% Spring (196 wt), 3000 gal liquid hog	190 309	CB CC	181 193
2	3	283	No N or Manure	0	C-60d	154
18	2	276	62 gal 28% Spring (175 wt), 3000 gal liquid hog	288	CC	193
11	1	276	60# urea w/planter, 15 tons shedded manure	136	CO	217
11	4	262 251	60# urea wiplanter, 15 tons shedded manure	136	C-pasture	193
32 35	4	251 229	28% Spring 120# 28% & Foilar Spring	120	CC CB	176 174
11	3	218	60# urea wiplanter,	60	oc oc	181
6	4	217	60# Ammonium Sulfate Fall, 14 ton/a shed manure seasonal	131	CC	175
8	3	216	130# encapsulated urea Spring	130	CB	176
35	4	208	120# 28% & Foliar Spring	120	CB	144
35	2	207	160# 28% Spring	160	CC	163
24	85	1,663		185		189

	2005	2006	2007	2008	2010	2011
Phosphorus Index	\$1,230	\$13,400	\$7,195	\$7,830	\$5,240	\$7,015
Soil Conditioning Index	\$0	\$31,612	\$17,835	\$16,013	\$18,710	\$16,292
Nitrogen Performance	\$1,945	\$6,650	\$8,560	\$3,930	\$9,120	\$6,900
Other incentives	\$20,465	\$17,230	\$9,725	\$9,343	\$12,700	\$17,595
Watershed Performance	<u>\$0</u>	<u>\$0</u>	\$5,700	\$4,200	<u>\$0</u>	<u>\$0</u>
Total Incentives	\$23,640	\$68,892	\$54,765	\$46,226	\$45,770	\$47,802
No. of Cooperators	33	38	47	50	52	56

Evaluation

- 30% reduction in stream nitrate
- Watershed average IPI improved from 2.48 to 2.19

Installation and improvement of 150,000 feet of grassed waterways and vegetative buffers

Family Biotic Index improved: 5.83 (fairly poor) to 4.74 (good)

Evaluation - Outcomes

- Watershed participation exceeds 75%
- 19% reduction in stream nitrate with 2 years consecutive years less than 10 mg/L
- 10,500 tons reduction of sediment delivery
- Watershed average IPI improved from 2.70 to 2.18
- 3 denitrifying bioreactors installed

Evaluation - Outcomes

Resident Leadership

Questions